Working with Adobe Acrobat and VFP

Session 29

Richard A. Schummer

Kirtland Associates, Inc.

999 Chicago Road, Suite 200

Troy, MI 48083, USA

Voice: (248)577-0338

Fax: (248)577-3552

Email: rick@rickschummer.com
rschummer@compuserve.com
ras@kirtlandsys.com
www.rickschummer.com
Overview

In this session you will be shown how the Adobe Acrobat Portable Document Format (PDF) is an effective way to share information electronically. Most people use PDF files to generically transfer any document without the need of the recipient to have the native applications. PDF files can be used in collaborative environment, using the markup tools that make electronic review a piece of cake. PDF files are rapidly becoming the standard when publishing web output to work around the formatting limitations of standard HTML. This session will show how VFP developers can leverage this technology to enhance their applications.

Introduction of Adobe Acrobat Portable Document Format (PDF)

The Adobe Acrobat website bests describes the Acrobat technology:

“Adobe® Portable Document Format (PDF) is the open de facto standard for electronic document distribution worldwide. Adobe PDF is a universal file format that preserves all of the fonts, formatting, colors, and graphics of any source document, regardless of the application and platform used to create it. PDF files are compact and can be shared, viewed, navigated, and printed exactly as intended by anyone with a free Adobe Acrobat® Reader™. You can convert any document to Adobe PDF, even scanned paper, using Adobe Acrobat 4.0 software.”

In a nutshell, any information that can be printed to a Windows printer can be generated into an Acrobat PDF file. This generated PDF file can be viewed by anyone who has an application like Acrobat Reader. The Adobe Acrobat Reader is a software package that displays the PDF file for viewing and has a number of features that include printing of the document. This allows users to view information without having the originating application installed. Adobe also has an ActiveX component that will display PDF files in a web browser.

So why publish to the PDF format instead of HyperText Markup Language (HTML) format. HTML was designed for single page documents with limited formatting capabilities. The presentation of the document differs from one computer to another and from one web browser to another. Also, to transmit a single page, one needs to transmit many files containing different parts of the page (one file for each graphic). PDF documents can have hundreds of pages contained in one file with all the formatting capabilities of modern applications.

An example of the use of these components is the company accountant publishing the sales results tracked in a custom database application (developed by a top gun VFP developer) to a PDF file. This file could be transferred via email to the sales force and they could view it on their laptops for review. Changes could be emailed back to account and updated in the database. The accountant recreates the PDF file and posts it on the company website. Now all employees in the company can hit the company website to see how well the company sales are going.

Acrobat Reader vs. Business Tools vs. Full Acrobat

In this article and during the presentation you will hear the concept of different versions of Acrobat. I am not referring to version 3.x versus 4.x, I am referring to the Acrobat Reader versus Acrobat Business Tools vs. the full Acrobat product. These products have differing capabilities. Reader is just that, a PDF viewer that allows anyone free access to PDF viewing. The full Acrobat product allows for the viewing and creation of PDF files. The Business Tools edition has more features supported than Reader, and less than the full version. Here is a chart that describes the features available in each edition:

[image: image1.png]
Figure 1. The Acrobat line of products from Adobe comes in three flavors. This chart from the Adobe.com website outlines the features found in these editions.

Acrobat Reader is a free product that allows anyone to view the PDF files on the client PC and in a web browser. This can be downloaded from the Adobe.com site. The Business Tools edition provides the collaboration tools with an affordable price ($79) that can be implemented on a broader scale implementation. The full Acrobat product is the only edition that allows you to generate the PDF files. It also comes with a steeper cost of approximately $200.

Amyuni’s PDF Converter

The Amyuni PDF Converter is a third party product that loads a printer driver (just like the Acrobat version) and also comes with an ActiveX interface. This printer driver will redirect the printer output into a PDF file just like the Adobe Acrobat product. The there are a number of differences. The Amyuni PDF Converter does generate the PDF file via a printer driver, but this is all the product accomplishes. It does not support the interactive designer, plug-ins, or forms technology. The advantages include a royalty-free runtime and the ability to integrate with your custom applications.

The PDF Converter runs $129 for a single-user license for one platform and $189 for all the Windows platforms (3.1, 95, 98, NT, and 2000). The Developer Version contains the ActiveX interface and is purchased one time ($800 for single OS platform, $1150 for all platforms) and has a royalty-free distribution license. The Developer Version only allows features to be accessed via the ActiveX interface and does not have any user interface. This works well for VFP (and other Visual Studio tools) based applications. If your users need the user interface to the PDF Converter then you can get a site license for $2500 for a single OS platform or $3600 for all OS platforms. I’m not trying to include an ad here for Amyuni, just trying to provide a baseline so you can evaluate the advantage or disadvantage of this product line. I will advise you to check out the Amyuni.com website for all the details.

Okay, this sounds good so far, but wait there is more! Amyuni also has Visual FoxPro specific examples to boot and they actually advertise in VFP magazines! But wait there is even more; they have even gone as far as developing an FLL file for use with VFP. Now the FLL solution is not recommended since the ActiveX interface works well, but it is nice that Amyuni is showing support for VFP in this fashion.

[image: image2.png]
Figure 2. The Adobe and Amyuni PDF products load printer drivers to direct output from Windows applications to PDF files.

Licensing Considerations

All PDF creation features are available in both the Adobe PDFWriter/Distiller and Amyuni PDF Compatible Printer drivers. The Amyuni PDF Converter gives an unlimited distribution product with the Developer Version. You or your client will need to purchase a full copy of Acrobat for every PC that will generate PDF files. In a small shop (less than 6 users) it may be better to go the Acrobat route; larger sites or vertical market apps should seriously look at the Amyuni product. Adobe does have an Open Options Site License Program for organizations with 1,000 or more workstations. Contact Adobe for more specifics.

Once the Acrobat printer driver is loaded it automatically becomes available to all Window’s applications and is actively visible in several applications already installed. For instance, all the Microsoft Office (v97 and 2000) applications have the PDFMaker macro/toolbar installed and available. This feature is not available with any of the Amyuni versions.

Output of Reports via Adobe PDF Driver

Example: PromptPDF.prg

Once the full version of Adobe Acrobat is installed, generating VFP reports to a PDF file is quite simple. First you make sure that the PDF Printer Driver is set as the default printer for the VFP application. This can be any VFP report. If the report has a hard-coded report driver in the TAG, TAG2, and EXPR fields, the following code does not work. No special driver setting has to be made in advance, just use your standard methodology of outputting a report to the printer:

* Generic call where VFP prompts the user with the

* printer dialog each time the report is run

REPORT FORM ContactListing TO PRINTER PROMPT NOCONSOLE

OR

* Generic call so user selects printer before report is printed,

* but it changes the VFP Printer

SYS(1037)

REPORT FORM ContactListing TO PRINTER NOCONSOLE

OR

* Call that has a hardcoded setting to drive the report

* to the Acrobat Printer, yet saves the old printer setting

* for reset later.

lcPDFPrinter = "Acrobat PDFWriter"

lcOldPrinter = SET("PRINTER", 2)

SET PRINTER TO NAME (lcPDFPrinter)

REPORT FORM ContactListing TO PRINTER NOCONSOLE

SET PRINTER TO NAME (lcOldPrinter)

Once the report is sent to the printer via the REPORT FORM command, the following dialogs are presented:

[image: image3.png]
Figure 3. The PDF Save File As dialog allows the user to specify the name of the PDF file as well as specific document properties.

Optionally you can hit the Edit Document Info. commandbutton on this dialog to bring up the Acrobat PDFWriter Document Information.

[image: image4.png]
Figure 4. The PDF Document Information provides the readers of the document key details.

This information is stored (and can be optionally reviewed) in the PDF file that is generated:

[image: image5.png]
Figure 5. The General Info dialog within Acrobat will display the PDF Document information for the reader as entered by the document creator.

Error Traps and Drawbacks

The key to this process (and any other printer driver selection process) is to capture the VFP “Error loading printer driver” (error 1958). Make sure to include this trap in your error scheme or swap in a special error trap into the report printing mechanism.

One drawback is the need for user interaction. Using this mechanism, the end user must type in a filename. At the same time they could be overwriting a PDF file generated by the person in the cubical next to them. We address this issue in the next section.

Unattended Output of Reports Via wwPDF40 Class and Adobe

Example: NoHandsPDF.prg

In the previous section we discussed the basic VFP report print to PDF process. While this process is simple, it has a significant drawback in the fact that it needs an end user to interact and enter in a file name before the PDF can be generated. What happens if you want to automatically generate a slew of reports from Visual FoxPro during a batch process that happens in the middle of the night? You or your clients could hire an operator that sits and watches the process and types in the filenames as they are prompted, or you can head directly to the West Winds web site and get the wwPDF40 class library.

Rick Strahl has written plenty of code that allows VFP developers to generate PDF files without the printer driver interaction prompting for a PDF filename. This class (wwPdf.prg) is available from http://www.west-wind.com/Webtools.asp and will be available from www.Hentzenwerke.com after this conference is complete, as part of the session downloads.

The concept is straightforward. The Acrobat printer driver is driven on settings available in an INI file. Rick’s class manipulates these settings.

* Partial listing from NoHandsPDF.prg

lcOldProcedure = set("procedure")

set procedure to wwPDF additive

set procedure to wwAPI additive

loPDF = createobject('wwPDF40')

lcNow = strtran(strtran(strtran(ttoc(datetime()),"/",""),":",""),space(1),space(0))

lcFileName = "ContactList" + lcNow + ".pdf"

lcOutputFile = sys(2023) + lcFileName

lcWebDirectory = ".\"

loPDF.PrintReport("ContactListingPDF", lcOutputFile)

COPY FILE (lcOutputFile) TO ;

 (lcWebDirectory + lcFileName)

wait window (lcWebDirectory + lcFileName) nowait

loPDF = .NULL.

set procedure to (lcOldProcedure)

As the code shows, the process is simple. Set procedure to two programs that contain all the class definitions necessary to manipulate the needed OS INI files that contain the information used by the Acrobat PDF printer driver and create the PDF file without the user being prompted for a file name. It should be noted that the “Acrobat PDFWriter” printer driver must be set as the selected printer, when the report is developed. This means that the PDFWriter must have the printer driver information stored in the FRX. This is contrary to standard VFP desired behavior.

There is a complete article on this topic written by the master himself. Check out “Create Web Reports with Adobe Acrobat Documents” by Rick Strahl in the March 2000 issue of FoxPro Advisor.

Unattended Output of Reports Via Amyuni’s PDF Converter

Example: cusAmyuniPDF (kaPDF.vcx)

In the previous section we demonstrated building PDF files in a hands-off mode. This technique requires two tools, the full Acrobat version and the West Winds PDF classes. Rick Strahl is kind enough to offer his classes for free, but the Acrobat product lists for $200 a license. If you are running this solution you need to buy a license for each user (or web server) that is generating these documents. This may not sound bad for a shrink-wrapped package that costs in the tens of thousands of dollars, but what if all 50 users need this functionality? You could be adding another $10,000 to the project implementation costs. This is where a product called the Amyuni PDF Converter comes into play.

The PDF Converter is accessed in code via an ActiveX interface or an FLL library. The examples I will demonstrate here are for the ActiveX interface. The class example handles both editions so feel free to review the code for the differences between the two approaches. First you must instantiate the control and initialize it.

this.oPDFPrinter = createobject("CDINTF.CDINTF")

this.oPDFPrinter.DriverInit("PDF Compatible Printer Driver")

After the printer driver is initialized we need to set up the parameters to achieve the desired output. This process is handled through the SetDriverParameters() method. There are several parameters available. I have set up several properties in the cusAmyuniPDF custom class to handle the options. The method code is as follows:

* cusAmyuniPDF.SetDriverParameter() method

#define ccPDF_NOPROMPT 1 && do not prompt for file name

#define ccPDF_USEFILENAME 2 && use file name set by SetDefaultFileName else use

 && document name

#define ccPDF_CONCATENATE 4 && concatenate files, do not overwrite

#define ccPDF_DISABLECOMPRESSION 8 && disable page content compression

#define ccPDF_EMBEDFONTS 16 && embed fonts used in the input document

#define ccPDF_BROADCASTMESSAGES 32 && enable broadcasting of PDF events

if not isnull(this.oPDFPrinter)

 * Set the destination file name.

 this.oPDFPrinter.DefaultFileName = this.cPDFFileName

 * Set resolution to to the desired quality

 this.oPDFPrinter.Resolution = this.nResolution

 * Update driver info with resolution information

 this.oPDFPrinter.SetDefaultConfig()

 * Note: Message broadcasting should be enabled in order to insert bookmarks from VFP.

 * But see the notes in the AddBookmark function below!

 this.oPDFPrinter.FileNameOptions = iif(this.lPrompt, 0, ccPDF_NOPROMPT + ccPDF_USEFILENAME) + ;

 iif(this.lBookmarks, ccPDF_BROADCASTMESSAGES, 0) + ;

 iif(this.lConcatenate, ccPDF_CONCATENATE, 0) + ;

 iif(this.lCompression, 0, ccPDF_DISABLECOMPRESSION) + ;

 iif(this.lEmbedFonts, ccPDF_EMBEDFONT, 0)

 * Save the current Windows default printer so we can restore it later.

 this.oPDFPrinter.SetDefaultPrinter()

else

 * Handle FLL settings (and this is in the class <g>)

endif

Now the driver is ready to produce the PDF file. At this point you have made settings to have the user prompted for a filename (default in this example) or not, whether bookmarks are generated (FLL option only), if the contents are concatenated with previous output, if the PDF is compressed (a default for PDFs), and if fonts are embedded. This is really not that much work. The VFP report can now be generated with the following code:

* Set the VFP printer name to the PDF printer, and print the report.

this.cOldPrinterName = set("printer", 2)

set printer to name "PDF Compatible Printer Driver"

report form (this.cReportName) noeject noconsole to printer

The class also handles the resetting of the original printer driver and cleans up the object references on the Destroy of the object. Modifications or enhancements to this class could also forward a text file or HTML output generated from your applications to a PDF file as well.

Replacement for the VFP Report Print Preview

Example: AltPrintPreview.scx

If one was to poll VFP developers and ask them to note a weakness in Visual FoxPro, my guess is that a big percentage of them would point to the Report Designer Preview mode. It has not had a major enhancement since the days of version 2.x. There are plenty of issues with the display depending on the printer drivers, video drivers and the monitor resolution. The zoom feature has limited percentage settings. It has no drill down capability and shows its age by not displaying hyperlinks. One day I thought, why not use Acrobat to act as the report print preview instead of the standard VFP method?

In the previous section of this article we already developed the method to generate the PDF file without user interaction. Now all we need is a method of displaying the document in the reader. Not a problem, the following line of code works just fine on my PC:

run /n1 ;

 "C:\Program Files\Adobe\Acrobat 4.0\Acrobat\Acrobat.exe" ;

 "C:\My Documents\MemberList200008.PDF"

So now we need is a way to make the call generically. There are several solutions to this. We can store the location in a control or configuration file. While this works it is just one more thing that the users need to maintain and can possibly set up wrong, which leads to another support call. So how can you find this? Fortunately, Acrobat registers itself in the Windows registry and the executable is stored in several keys. The key that seems appropriate for this exercise is:

[HKEY_CLASSES_ROOT\AcroExch.Document\shell\print\command]

The results will differ based on which version of Acrobat is installed, full product or just the Reader. It is important to note that you will need the full product to generate the PDF files to start with unless you have a product like the Amyuni PDF Converter.

Acrobat (full):
C:\\Program Files\\Adobe\\Acrobat 4.0\\Acrobat\\Acrobat.exe

Acrobat Reader:
C:\\Program Files\\Adobe\\Acrobat 4.0\\Reader\\AcroRd32.exe

So with this functionality we can now use a Registry class to grab the executable. The example I will use is the Registry class that comes as part of the Fox Foundation Classes (FFC).

lcRegFile = HOME(2)+"classes\registry.prg"

lcAppKey = ""

lcAppName = ""

* Check for the existence of the registry class

if not file(lcRegFile)

 messagebox("Registry class was not found (" + lcRegFile + ")")

 return

endif

* Instance the Registry object

loReg = newobject("FileReg", lcRegFile)

* Get Application path and executable

lnErrNum = loReg.GetAppPath("PDF", @lcAppKey, @lcAppName)

if lnErrNum != 0

 messagebox("No information available for Acrobat application.")

 return

endif

* Remove switches here (i.e., C:\EXCEL\EXCEL.EXE /e)

if atc(".EXE", lcAppName) != 0

 lcAppName = alltrim(substr(lcAppName, 1, atc(".EXE", lcAppName) + 3))

 if asc(left(lcAppName, 1)) = 34 && check for long file name in quotes

 lcAppName = substr(lcAppName, 2)

 endif

endif

Now that you have the location of the Acrobat executable you can proceed with the building of the file and shell out to Acrobat in “preview mode”.

* Build the file name for the PDF

lcFileName = "ContactList" + lcNow + ".pdf"

lcOutputFile = addbs(sys(2023)) + lcFileName

* Generate the PDF file

loPDF.PrintReport("ContactListingPDF", lcOutputFile)

* Run Acrobat or Acrobat Reader

run /n1 ;

 &lcAppName ;

 &lcOutputFile

The RUN command does not wait for the Acrobat application to be shut down. This is important in the fact that any code that follows the preview will execute. Therefore do not run code to clean up the PDF file because they are open. It should be noted that repeated calls to run either versions of Acrobat Reader would open up another PDF file in the one single instance of Reader. This has no effects on the ability for the user to review any of the files. As with anything in the computing world, the limits are memory, file handles, and other system resources.

So what are some of the advantages of this reporting alternative? In this author’s opinion, it addresses some of the VFP Report Writer Preview drawbacks. Mainly the preview zoom (or as it is really known as, “lack of zoom”), multiple pages visible at one time with continuous mode, a search feature, and a true What-You-See-Is-What-You-Get (WYSIWYG). The Acrobat Reader provides super zoom capability (12.5% up to 1600%).

So VFP developers have been challenged by the VFP Report Designer and have not been bashful about voicing these issues. Microsoft has repeatedly noted that there will be little to nothing addressed with the existing Report Designer in future versions of Visual FoxPro. Microsoft has also noted that we live in a component world. This is a beautiful example of that component world reaping benefits for our clients.

Acrobat in VFP Forms

Example: PDFDisplay.scx

If you have the full Acrobat product you will also have the ActiveX control that will display a PDF file in a VFP form. This control is loaded with the Reader edition of Acrobat, but I have not been able to get this control to cooperate with VFP.

First you will need to select the Acrobat Control for ActiveX in the Controls tab of the VFP Options dialog.

[image: image6.png]
Figure 6. The Acrobat Control for ActiveX is available in the Controls tab of the VFP Options dialog if you have the full version of Acrobat loaded.

Building the form is as basic as it gets. Drop the control from the ActiveX palette on the VFP Form Controls toolbar on to a VFP form.

[image: image7.png]
Figure 7. The Acrobat Control is the middle toolbar button in the figure.

The property that needs to be set and/or bound to a VFP control is Src. This tells the Acrobat control which PDF file to load and display. The Src property can be set dynamically which reloads the selected PDF file in the viewer. There are a number of methods that can be called to change the behavior of the PDF viewer. Unfortunately there is no documentation in the ActiveX control properties dialog that describes the method parameters. We can open up the ActiveX control (PDF.OCX) or the control’s typelib file (PDF.TLB) to see what the parameters are. Still, there is no specific documentation that I could find before assembling these session notes.

[image: image8.png]
Figure 8. The Acrobat Control for ActiveX exposes a number of methods for the developer to interact with the control in the VFP form. This is the exposed in the VFP Class Browser.

The sample form has a couple of things you should note before trying to run it. The first is that you must have the ActiveX control registered on your PC. The second is that I have hardcoded the PDF filename in the Src property. There is a good chance that your directory structure does not match mine so some changes will need to be implemented before running the form.

[image: image9.png]
Figure 9. This is a PDF file displayed in a VFP form. You can select the file by typing in the filename in the textbox, or via the commandbutton to select a different one via the GetFile() dialog. The spinner control allows you to programmatically change the zoom percentage.

Acrobat in the Web Browser

Example: Default.htm

Presenting PDF files in the web browser is a natural way to publish information for mass distribution. More and more websites are making information available in this format. It is not hard to believe that there are better publishing tools than straight HTML. The PDF files display in the Acrobat ActiveX control and have the same functionality as viewing the files in Acrobat Reader.

The first method of getting PDF output to the web is to hyperlink the file within the HTML document. Here is a simple example:

Michigan First Report

Once the hyperlink is activated the PDF file is downloaded and opened in the web browser. It works the same in either of the major web browsers.

	[image: image10.png]
	[image: image11.png]

Figure 10. Hyperlinking the PDF file in the HTML will open the PDF file within the web browser.

The second method is to generate the PDF file on the fly and pass it directly back to the browser. This is accomplished by including the Content-Type directive within the stream of text that is returned to the browser.

Content-Type: application/pdf

Follow this with the PDF file contents and the browser will display the PDF file. An easy way to accomplish this is to once again leverage the wwPDF40 class from West Winds. The method to call is PrintReportToString(). This method prints the report to a PDF file and then returns the contents of this file as a string.

loPDF = createobject('wwPDF40')

lcPDF = loPDF.PrintReportToString(lcReport)

Response.ContentTypeHeader("application/pdf")

Response.Write(lcPDF)

The ContentTypeHeader() method call generates the HTTP Header. This will look something like:

HTTP/1.0 200 OK

Content-type: application/pdf

...PDF content here.

The Write() method takes the content of the PDF file returned from the PrintReportToString() and concatenates it to the HTTP Header.

The web browser notes the Content-Type and looks at the Windows’ registry. When Acrobat is installed it registers the PDF and FDF extensions. Therefore if a PDF file is sent to the browser with the Content-Type in the HTML it will activate the Acrobat Reader within the browser.

	[image: image12.png]
	[image: image13.png]

Figure 11. Windows’ folder options dialog shows the Content Type (MIME) for both the PDF and FDF extensions.

Acrobat Forms Author Technology

Example: BWC100Data.pdf, BCW100Export.fdf,

A plug-in included with Acrobat is the Forms Author capability. You can create a form within a PDF file that allows data entry into the PDF. This form technology is built in and available full Acrobat for development and in data entry mode with Reader. User can then apply the business “paperwork” in electronic format. So what are the advantages? For one, the forms can be replicated electronically just like they are on paper. Since Acrobat printing is truly WYSIWYG the forms can be printed after being filled in. They can be saved after the data is entered which provides an audit trail. The information can be extracted and saved in a database for further analysis.

Visual FoxPro developers might be asking the question, why would I need Acrobat forms when I have a great forms designer in VFP? The difference is that Acrobat Forms can also be implemented in a distributed environment via the Internet without the overhead of the ActiveDoc technology used in Visual FoxPro. This means that the PDF file can be accessed on the web, users can enter in data, and the information can be submitted to the web server for processing.

[image: image14.png]
Figure 12. This form is the State of Michigan First Report of Injury (MI100) form with some data filled in as the user would see it.

There are a couple of concepts in developing these forms that are very familiar to Visual FoxPro developers. The Acrobat Forms “designer” has similar functionality as the VFP form designer. You change the mode of the PDF from “entry” to “designer” via the Form Tool icon on the left-side toolbar icon [image: image15.png]. This toggles the mode so the form editor is available. Right-click on any object will bring up the shortcut menu. One of the many options is the Properties. There are properties to name the objects, comment their use, adjust fonts, format the entry, set colors, require data, make it read only, have default values, and align the text. There are settings to run code for events and perform validation. Sound familiar? Object types include Text (TextBox), CheckBox, ComboBox, ListBox, RadioButton (OptionGroup), Button (CommandButton) and Signature (no VFP equivalent).

[image: image16.png]
Figure 13. This is the same form, but now seen in “development mode”.

	[image: image17.png]
[image: image18.png]
[image: image19.png]
	[image: image20.png]
[image: image21.png]
[image: image22.png]

Figure 14. These are the different pages on the Acrobat Form Object Property Sheet for a Text object.

Implementation of a PDF with Forms is identical to a regular PDF file. They can be used on a client PC or published to the Internet in the same manner as described in the prior section. These files can be opened, data entered, forms printed, and PDF saved.

To this point we have not discussed the interaction with VFP. The data captured in an Acrobat Form is exported via the File>Export>Form Data… menu option. This option is only available with the Business Tools or full Acrobat editions. This process creates a Form Data Format (FDF) file. This file is a flat text file that includes tags and data. Here is the information in the FDF file as it was exported from the BWC100Data.pdf:

%FDF-1.2

%âãÏÓ

1 0 obj

<<

/FDF << /Fields [<< /V (3)/T (#_dep)>> << /V (53)/T (#weeks)>> << /V (Nose)/T (body_part)>>

<< /V (3627)/T (bus_type)>> << /V (09/25/2000)/T (date_hired)>>

<< /V (09/24/2000)/T (date_prepared)>> << /V (Director of Development made the developer work late)/T (describe)>>

<< /V /No /T (die)>> << /V (9876 Main Street)/T (ee_address)>> << /V (Sterling Heights)/T (ee_city)>>

<< /V (07/05/1963)/T (ee_dob)>> << /V (MI)/T (ee_state)>> << /V (810-555-1212)/T (ee_tele)>>

<< /V (48314)/T (ee_zip)>> << /V (999 Chicago Road Suite 200)/T (er_address)>>

<< /V (Troy)/T (er_city)>> << /V (Kirtland Associates, Inc)/T (er_name)>>

<< /V (\(248\)577-0338)/T (er_phone)>> << /V (MI)/T (er_state)>>

<< /V (48083)/T (er_zip)>> << /V (20)/T (er2_aww)>> << /V (Killer Apps, Inc)/T (er2_name)>>

<< /V (32-1367227)/T (fein)>> << /V (1)/T (fringes)>> << /V (40)/T (gaww)>>

<< /V (09/24/2000)/T (inj)>> << /V (Troy)/T (inj_city)>> << /V (Oakland)/T (inj_county)>>

<< /V (MI)/T (inj_state)>> << /V (Armstrong Insurance Inc.)/T (ins_co)>>

<< /V (\(248\)555-1212)/T (insco_phone)>> << /V (Attendee, Whilfest)/T (last_name)>>

<< /V (09/24/2000)/T (ldw)>> << /V (05)/T (loc_code)>> << /V (M2323)/T (mail_loc)>>

<< /V (643276478)/T (mesc#)>> << /V (Face hit the keyboard as the developer fell asleep while working late)

/T (nature)>>

<< /V (09/28/2000)/T (notify)>> << /V (The AnyKey)/T (object)>>

<< /V (Programmer)/T (occupation)>> << /V /Yes /T (premises)>> << /V (Rick Schummer)/T (preparer_name)>>

<< /V (10/01/2000)/T (rtw)>> << /V /Female /T (sex)>> << /V (432432432)/T (ssn)>>

<< /V /Married-Joint /T (tax_status)>> << /V /No /T (vochandi)>>

<< /V /Yes /T (volunteer)>>]

/F (bwc100data.pdf)>>

>>

endobj

trailer

<<

/Root 1 0 R

>>

%%EOF

FDF ToolKit ActiveX Control

So now that we understand Acrobat PDF files can be built as a data entry mechanism and provide printing capability, the question begs, how do we use this with database applications? After all, can’t we just use Visual FoxPro forms to allow our users to enter the data that the applications house? Of course we can, but what about data entered via the Internet? What about the true replication of forms used in the business? This is where the use of PDF Forms can really shine.

Adobe has provided a product called the FDF Toolkit on their website. This is a free product. The download includes Application Programming Interfaces (API) for C/C++, Java, Perl, and ActiveX, and some extensive documentation on how it can be used with these tools. VFP developers will find the Win32 ActiveX interface of the FDF Toolkit easy to use and very compatible (despite the lack of VFP examples in the documentation <g>). The ActiveX portion of the toolkit is made up of two files: FdfAcX.dll and FdfTk.dll.

The examples that follow to read and write a FDF file will seem very familiar if you have worked with any Automation to Microsoft Word.

Register the ActiveX control.

The ActiveX control resides in the Windows/System directory. The process to register the FDF Toolkit ActiveX control is a simple as the following command:

RegSvr32 FdfAcX.dll

The control is self-registering. The VFP Setup Wizard will automatically register this control as part of the installation process so deployment process is mindless. There is no reason to register the FdfTk.dll.

Instantiating the Access to the FDF File

Just like installing the control, the instantiation of the FDF ActiveX interface is accomplished via a standard process of using the VFP CREATEOBJECT() function. Here is an example of the needed code:

loFDF = createobject("fdfApp.FdfApp")

This returns an object reference to the FDF control so that the methods can be run to read and write data from the FDF file.

Extracting the data (reading the FDF)

Example: FDFRead.prg

Now that we have the important object reference to the FDF control we can start to manipulate the data inside of it via the interface methods that are exposed.

The first step in reading the information is to open the FDF file. This is accomplished by running the FDFOpenFromFile() method.

loFDFFile = loFDF.FDFOpenFromFile("bcw100export.fdf")

This method returns an object reference to the FDF file. If the file does not exist or could not be opened, an OLE Exception is thrown. You will need to handle this issue in your error-handling scheme. Once the object reference is gained you can go after specific fields in the FDF. To take this approach you need to provide the field name as a parameter to the FDFGetValue() method. One important item to note is the field names in the FDF and access to these fields is case sensitive. The passing of "last_name" is not the same as "Last_Name". So, to access a specific field you can use code like:

lcFDFField = "last_name"

luFieldValue = loFDFFile.FDFGetValue(lcFDFField)

You can also use the FDFNextFieldName() method to loop through the fields. To get the first field in the file you pass a null string (space(0)) as the parameter to the FDFNextFieldName() method. To get the next field in the FDF file you pass the current field. Here is some code that loops through all the fields in the FDF file:

if vartype(loFDFFile) = "O"

 * Get the first field name in the FDF file

 lcFDFField = loFDFFile.FDFNextFieldName("")

 lnFieldCounter = 1

 clear

 * Loop through the FDF file to get the values

 do while !empty(lcFDFField)

 luFieldValue = loFDFFile.FDFGetValue(lcFDFField)

 ? str(lnFieldCounter, 6), lcFDFField, "(", vartype(luFieldValue), ") ==", luFieldValue

 lcFDFField = loFDFFile.FDFNextFieldName(lcFDFField)

 lnFieldCounter = lnFieldCounter + 1

 enddo

endif

loFDFFile.FDFClose()

There is one item that I want to note at this time. The data in the FDF file is strictly character based. If you are moving this data into a table you will likely need to transform the data into the proper data type for the field.

Prefilling the Form with data (writing the FDF)

Example: FDFWrite.prg

Reading the file might be enough excitement for some of our clients, but what if they could also prefill a PDF Form with data from their VFP application? Would I ask this question if there was no way of handling this? <g>

The FDF Toolkit control also provides a plethora of methods to write out data into the FDF format. Once the object reference to the FDF ActiveX control is you execute the FDFCreate() method. This creates the FDF in memory and returns an object reference to this file. After the file is create, the field name tag (/F) and value tag (/V) are written for each of the fields you want written via the FDFSetValue() method. The example below writes out two fields.

loFDFFile = loFDF.FDFCreate()

* Fill in two fields in the FDF

lcFDFField = "###-##-####"

lcFDFFieldValue = "876-34-0987"

luFieldValue = loFDFFile.FDFSetValue(lcFDFField, lcFDFFieldValue, .F.)

lcFDFField = "last_name"

lcFDFFieldValue = "GLGDW 2000 Example"

luFieldValue = loFDFFile.FDFSetValue(lcFDFField, lcFDFFieldValue, .F.)

Naturally the code you will write will include more than a couple of fields. The final method called before closing the file is the FDFSetFile(). This writes out the /F tag, which indicates the PDF file the FDF file is associated. When the FDF file is opened it will preload the associated PDF file, then fill in the fields loaded in the FDF.

* Set the name of the PDF associated with the FDF

loFDFFile.FDFSetFile("bwc100nodata.pdf")

The FDFSaveToFile() physically writes out the FDF data to a file. The file is closed and the object references should be released.

* Write out the file

loFDFFile.FDFSaveToFile("GLGDW2000Test.fdf")

loFDFFile.FDFClose()

There are a number of other methods in the FDF ActiveX that provide behaviors you may find useful. There are capabilities to write FDF files to a string, additional tags can be inserted into the file, add JavaScript, etc.

FDF from Acrobat Reader

What is the use of this feature if our customers are regulated to use the free Acrobat Reader edition? The Export to FDF option is not available on the menu. JavaScript code to generate and mail the FDF file and write an FDF file does not function in the Reader edition. There is a “loophole” that Adobe allows with the FDF feature. You can perform a HTML Form “submit” via JavaScript within the PDF Form. This sends the forms data back to a web server. The web server can accept the form data via a CGI process.

The JavaScript to perform the submission is as follows:

this.submitForm("http://localhost/firstreport/SubmitForm.WCFR",false,true,"" ,false)

The first parameter is a hardcoded path to the web server and the CGI process. In the above example we are passing this request to the local PC web server. The web server is running a WebConnect process that has a script called SubmitForm.WCFR. This could also be direct CGI code running on a web server anywhere in the galaxy <g>. The data is not received as a FDF file; rather it is received in the same manner as HTML Form variables. Therefore processes like WebConnect, which has the capability to parse apart and process the pieces of information, can accept this information and handle it the way the needs of the customer dictate. Here is some sample code on how a WebConnect process could respond to the submission from a PDF Form:

function SubmitForm()

dimension laFormVars[1,1]

this.oRequest.aFormVars(@laFormVars)

* Found the staged data, reporting fields

this.oResponse.Clear()

this.oResponse.HTMLHeader(, "PDF Submit Test", "images\whitwav.jpg")

this.oResponse.WriteLn([<h2>Here is the submitted First Report data...</h2>])

this.oResponse.WriteLn([<table border="0" cellpadding="1" cellspacing="0" width="800">])

for lnCount = 1 to alen(laFormVars,1)

 this.oResponse.WriteLn([<tr>])

 this.oResponse.WriteLn([<td width="200" valign="top" align="right">] + ;
 laFormVars[lnCount,1] + [:</td>])

 this.oResponse.WriteLn([<td width="600" valign="top" align="left">] + ;
 laFormVars[lnCount,2] + [</td>])

 this.oResponse.WriteLn([</tr>])

endfor

this.oResponse.WriteLn([</table>])

this.oResponse.WriteLn("
Information has been forwarded to your claims provider")

this.oResponse.HTMLFooter()

endfunc

At this point we can use all that VFP knowledge we have and use this tool to do what it does best, munch the data. This information can be stored in a table, summarized, and a response sent back to the submitter via an HTML page and/or a quick email.

Case Study: Workers Compensation First Report on the Web

One of Kirtland Associates’ customers needed a way to gather information related to the injury of employees in their client base. The form that needs to be filled out is a state mandated form. Once filled out, the form is sent via snail mail or faxed to the state for filing. The information on the form is tracked in a FoxPro for DOS application. The First Report information is approved by the staff and turned into a claim which salary and medical payments are paid on to the injured employees.

Today the forms are manually filled in and a copy is faxed to our clients for processing. This is labor intensive because the people filing claims typically forget to fill in the required fields. This means that the staff reviewing the forms spends time going back and forth until all the information is gathered. The staff then needs to re-enter all the information from the paperwork into the FoxPro application. By now you probably see some technology implementation that will reduce the paperwork intensive process.

To complicate matters, the client’s customers are scattered across the state of Michigan. Some are in the big city (Detroit) and some are way up in the back woods of the Upper Peninsula of Michigan. This distributed environment presents the usual challenges associated with a standard LAN application. Items considered:

1. Email the PDF form with the information filled in

2. XML data transfer from a standalone application

3. Have application accessible via the web running on Terminal Server

4. Have the PDF form on the web with Submit button to send the data

Each of the options presents different challenges from a support and implementation standpoint. The email options (form or XML) have support nightmares waiting with email being down, and different email clients to support. The Terminal Server option was seriously looked at (and is still a future option), but the security issue of different customer data residing on the same system database was more scary than the customer was comfortable with. This left the PDF Form data on the web as the best option considering all the requirements, including a short delivery cycle.

Our solution was to purchase WebConnect and prototyped a VFP solution running on the web server. The design is as follows:

[image: image23.png]
Figure 15. Visual specification of the process to transfer PDF Form data to a FoxPro table/

The process is straightforward. The PDF Form data is submitted to the web server via the HTML Form submit. The WebConnect process written in Visual FoxPro takes the data and generates a FDF file. This file can be written directly to the FDF file if the web server has access to the directory. If the web server is hosted outside of the customer LAN/WAN, then the FDF file can be attached to an email and sent directly to an email client. A special VFP application sits and waits for emails. Once an email is recognized as arrived it is processed and the FDF is detached and saved into the FDF Directory. Another app (or the same application) can process the FDF and write the data out to the FoxPro table.

The prototype was very successful and the production application is under development even as this session is being presented.

Session Files

There are two ZIP files included with this session that are available for download from the www.Hentzenwerke.com after the conference. I split these files up as follows:

Schummer_pdf1.zip:

The files contained in this ZIP file are the source examples that I have developed for this session. This includes the programs and sample PDF files.

Schummer_pdf2.zip:

The files contained in this ZIP file are download demonstration files from the various companies that are discussed in this session.

Resources

Adobe

http://www.adobe.com/,

The newsgroup forums hosted by Adobe are a lot like the VFP community sites like Compuserve’s MSDevApps, FoxForum.com, Universal Thread, etc. You will find developers helping other developers (and end users helping end users).

There are a number of top-notch white papers and marketing literature on this site for developers and end-users alike. The information is helpful and reliable. Plenty of sample and idea generation material is also available.

http://partners.adobe.com/asn/developer/acrosdk/forms.html

This is the link to the Forms Data Format (FDF) Toolkit download page. The FDF Toolkit contains the documentation and the ActiveX control to access the data in the FDF files.

West Wind Technologies

http://www.west-wind.com/
Great class downloads for PDF interaction as well as a number of outstanding Internet interaction tools.

Amyuni

http://www.amyuni.com/
Amyuni has a good alternative to the Adobe Acrobat printer drivers. You can get a demonstration version of the driver used in the examples of this session. There are also drivers for generating DHTML, and other formats.

PDF Zone Website

http://www.PDFZone.com
This is a great site for the latest news in the PDF world. Mailing list that you can register to get regular updates sent to your email inbox.

ActivePDF

http://www.ActivePDF.com
This is a brand new site I recently ran into during my PDF surfing on the web. This is another PDF Print Driver tool that avoids the need for the Acrobat product. They specifically mention VFP on their COM product page so it automatically gets a look and a mention in this whitepaper. I have no direct experience with it, nor have I heard anything specific about it from the development community.

FoxPro Advisor Magazine

http://www.advisor.com/MMF:

“Create Web Reports with Adobe Acrobat Documents” by Rick Strahl in the March 2000 issue. Fantastic article that peaked this author’s interest in using the PDF technology in the applications developed for our customers.

Conclusion

The Adobe Acrobat technologies are very powerful tools in implementing reporting solutions for all types of application. Hopefully this session introduced you to an alternative way of having data analyzed in the applications you have created or will be creating as time moves on.

Acknowledgements

I want to thank the team at Kirtland Associates that made suggestions to the development process as the PDF technology was integrated into our development environment. A special thanks to Bill Kirtland, who always offered an encouraging word when I hit the development wall a couple of times. A big thank-you goes to Rick Strahl, one of the most generous VFP developers around. His contribution of the wwPDF class and his writings about the PDF technology has been extremely valuable. Patty Nowak (always my first reader) was kind enough to review this white paper and gently correct many flaws and makes me look much better than I deserve. Finally, thanks to the Detroit Area Fox User Group and Kirtland developers who listened to this presentation before it was ready for primetime and made numerous suggestions that made it better.

Copyright (2000 Richard A. Schummer. All Rights Reserved

Rick Schummer is the Director of Development for Kirtland Associates, Inc. in Troy MI, which creates custom database solutions for an expanding customer base. After hours he enjoys writing developer tools that improve his team’s productivity and occasionally pens articles for his favorite Fox periodicals and user group newsletters. Rick is a co-author of 1001 Things You Always Wanted to Know About Visual FoxPro, a founding member and Secretary of the Detroit Area Fox User Group (DAFUG) and Sterling Heights Computer Club. He is a regular presenter for these organizations; other user groups, at Microsoft's DevDays, and GLGDW 2000. rick@rickschummer.com, rschummer@compuserve.com, ras@kirtlandsys.com, and http://www.rickschummer.com
